Guava Class

Php code posted by Beep Boop
created at 08 Nov 16:09, updated at 09 Nov 13:06

Edit | Back
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
/*
 * Copyright (C) 2006 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.util.concurrent;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.util.concurrent.MoreExecutors.sameThreadExecutor;
import static com.google.common.util.concurrent.Uninterruptibles.getUninterruptibly;
import static com.google.common.util.concurrent.Uninterruptibles.putUninterruptibly;
import static com.google.common.util.concurrent.Uninterruptibles.takeUninterruptibly;
import static java.lang.Thread.currentThread;
import static java.util.Arrays.asList;
import static java.util.concurrent.TimeUnit.NANOSECONDS;

import com.google.common.annotations.Beta;
import com.google.common.base.Function;
import com.google.common.base.Preconditions;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Lists;
import com.google.common.collect.Ordering;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.UndeclaredThrowableException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.CancellationException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executor;
import java.util.concurrent.Future;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicInteger;

import javax.annotation.Nullable;

/**
 * Static utility methods pertaining to the {@link Future} interface.
 *
 * @author Kevin Bourrillion
 * @author Nishant Thakkar
 * @author Sven Mawson
 * @since 1.0
 */
@Beta
public final class Futures {
  private Futures() {}

  /**
   * Creates a {@link CheckedFuture} out of a normal {@link ListenableFuture}
   * and a {@link Function} that maps from {@link Exception} instances into the
   * appropriate checked type.
   *
   * <p>The given mapping function will be applied to an
   * {@link InterruptedException}, a {@link CancellationException}, or an
   * {@link ExecutionException} with the actual cause of the exception.
   * See {@link Future#get()} for details on the exceptions thrown.
   *
   * @since 9.0 (source-compatible since 1.0)
   */
  public static <V, X extends Exception> CheckedFuture<V, X> makeChecked(
      ListenableFuture<V> future, Function<Exception, X> mapper) {
    return new MappingCheckedFuture<V, X>(checkNotNull(future), mapper);
  }

  /**
   * Creates a {@code ListenableFuture} which has its value set immediately upon
   * construction. The getters just return the value. This {@code Future} can't
   * be canceled or timed out and its {@code isDone()} method always returns
   * {@code true}.
   */
  public static <V> ListenableFuture<V> immediateFuture(@Nullable V value) {
    SettableFuture<V> future = SettableFuture.create();
    future.set(value);
    return future;
  }

  /**
   * Returns a {@code CheckedFuture} which has its value set immediately upon
   * construction.
   *
   * <p>The returned {@code Future} can't be cancelled, and its {@code isDone()}
   * method always returns {@code true}. Calling {@code get()} or {@code
   * checkedGet()} will immediately return the provided value.
   */
  public static <V, X extends Exception> CheckedFuture<V, X>
      immediateCheckedFuture(@Nullable V value) {
    SettableFuture<V> future = SettableFuture.create();
    future.set(value);
    return Futures.makeChecked(future, new Function<Exception, X>() {
      @Override
      public X apply(Exception e) {
        throw new AssertionError("impossible");
      }
    });
  }

  /**
   * Returns a {@code ListenableFuture} which has an exception set immediately
   * upon construction.
   *
   * <p>The returned {@code Future} can't be cancelled, and its {@code isDone()}
   * method always returns {@code true}. Calling {@code get()} will immediately
   * throw the provided {@code Throwable} wrapped in an {@code
   * ExecutionException}.
   *
   * @throws Error if the throwable is an {@link Error}.
   */
  public static <V> ListenableFuture<V> immediateFailedFuture(
      Throwable throwable) {
    checkNotNull(throwable);
    SettableFuture<V> future = SettableFuture.create();
    future.setException(throwable);
    return future;
  }

  /**
   * Returns a {@code CheckedFuture} which has an exception set immediately upon
   * construction.
   *
   * <p>The returned {@code Future} can't be cancelled, and its {@code isDone()}
   * method always returns {@code true}. Calling {@code get()} will immediately
   * throw the provided {@code Throwable} wrapped in an {@code
   * ExecutionException}, and calling {@code checkedGet()} will throw the
   * provided exception itself.
   *
   * @throws Error if the throwable is an {@link Error}.
   */
  public static <V, X extends Exception> CheckedFuture<V, X>
      immediateFailedCheckedFuture(final X exception) {
    checkNotNull(exception);
    return makeChecked(Futures.<V>immediateFailedFuture(exception),
        new Function<Exception, X>() {
          @Override
          public X apply(Exception e) {
            return exception;
          }
        });
  }

  /**
   * Returns a new {@code ListenableFuture} whose result is asynchronously
   * derived from the result of the given {@code Future}. More precisely, the
   * returned {@code Future} takes its result from a {@code Future} produced by
   * applying the given {@code Function} to the result of the original {@code
   * Future}. Example:
   *
   * <pre>   {@code
   *   ListenableFuture<RowKey> rowKeyFuture = indexService.lookUp(query);
   *   Function<RowKey, ListenableFuture<QueryResult>> queryFunction =
   *       new Function<RowKey, ListenableFuture<QueryResult>>() {
   *         public ListenableFuture<QueryResult> apply(RowKey rowKey) {
   *           return dataService.read(rowKey);
   *         }
   *       };
   *   ListenableFuture<QueryResult> queryFuture =
   *       chain(queryFuture, queryFunction);
   * }</pre>
   *
   * <p>Note: This overload of {@code chain} is designed for cases in which the
   * work of creating the derived future is fast and lightweight, as the method
   * does not accept an {@code Executor} to perform the the work in. For heavier
   * derivations, this overload carries some caveats: First, the thread that the
   * derivation runs in depends on whether the input {@code Future} is done at
   * the time {@code chain} is called. In particular, if called late, {@code
   * chain} will run the derivation in the thread that called {@code chain}.
   * Second, derivations may run in an internal thread of the system responsible
   * for the input {@code Future}, such as an RPC network thread. Finally,
   * during the execution of a {@link MoreExecutors#sameThreadExecutor
   * sameThreadExecutor} {@code chain} function, all other registered but
   * unexecuted listeners are prevented from running, even if those listeners
   * are to run in other executors.
   *
   * <p>The returned {@code Future} attempts to keep its cancellation state in
   * sync with that of the input future and that of the future returned by the
   * chain function. That is, if the returned {@code Future} is cancelled, it
   * will attempt to cancel the other two, and if either of the other two is
   * cancelled, the returned {@code Future} will receive a callback in which it
   * will attempt to cancel itself.
   *
   * <p>The typical use for this method would be when a RPC call is dependent on
   * the results of another RPC.  One would call the first RPC (input), create a
   * function that calls another RPC based on input's result, and then call
   * chain on input and that function to get a {@code ListenableFuture} of
   * the result.
   *
   * @param input The future to chain
   * @param function A function to chain the results of the provided future
   *     to the results of the returned future.  This will be run in the thread
   *     that notifies input it is complete.
   * @return A future that holds result of the chain.
   */
  public static <I, O> ListenableFuture<O> chain(ListenableFuture<I> input,
      Function<? super I, ? extends ListenableFuture<? extends O>> function) {
    return chain(input, function, MoreExecutors.sameThreadExecutor());
  }

  /**
   * Returns a new {@code ListenableFuture} whose result is asynchronously
   * derived from the result of the given {@code Future}. More precisely, the
   * returned {@code Future} takes its result from a {@code Future} produced by
   * applying the given {@code Function} to the result of the original {@code
   * Future}. Example:
   *
   * <pre>   {@code
   *   ListenableFuture<RowKey> rowKeyFuture = indexService.lookUp(query);
   *   Function<RowKey, ListenableFuture<QueryResult>> queryFunction =
   *       new Function<RowKey, ListenableFuture<QueryResult>>() {
   *         public ListenableFuture<QueryResult> apply(RowKey rowKey) {
   *           return dataService.read(rowKey);
   *         }
   *       };
   *   ListenableFuture<QueryResult> queryFuture =
   *       chain(queryFuture, queryFunction, executor);
   * }</pre>
   *
   * <p>The returned {@code Future} attempts to keep its cancellation state in
   * sync with that of the input future and that of the future returned by the
   * chain function. That is, if the returned {@code Future} is cancelled, it
   * will attempt to cancel the other two, and if either of the other two is
   * cancelled, the returned {@code Future} will receive a callback in which it
   * will attempt to cancel itself.
   *
   * <p>Note: For cases in which the work of creating the derived future is fast
   * and lightweight, consider {@linkplain Futures#chain(ListenableFuture,
   * Function) the other overload} or explicit use of {@link
   * MoreExecutors#sameThreadExecutor}. For heavier derivations, this choice
   * carries some caveats: First, the thread that the derivation runs in depends
   * on whether the input {@code Future} is done at the time {@code chain} is
   * called. In particular, if called late, {@code chain} will run the
   * derivation in the thread that called {@code chain}. Second, derivations may
   * run in an internal thread of the system responsible for the input {@code
   * Future}, such as an RPC network thread. Finally, during the execution of a
   * {@link MoreExecutors#sameThreadExecutor sameThreadExecutor} {@code chain}
   * function, all other registered but unexecuted listeners are prevented from
   * running, even if those listeners are to run in other executors.
   *
   * @param input The future to chain
   * @param function A function to chain the results of the provided future
   *     to the results of the returned future.
   * @param exec Executor to run the function in.
   * @return A future that holds result of the chain.
   */
  public static <I, O> ListenableFuture<O> chain(ListenableFuture<I> input,
      Function<? super I, ? extends ListenableFuture<? extends O>> function,
      Executor exec) {
    ChainingListenableFuture<I, O> chain =
        new ChainingListenableFuture<I, O>(function, input);
    input.addListener(chain, exec);
    return chain;
  }

  /**
   * Returns a new {@code ListenableFuture} whose result is the product of
   * applying the given {@code Function} to the result of the given {@code
   * Future}. Example:
   *
   * <pre>   {@code
   *   ListenableFuture<QueryResult> queryFuture = ...;
   *   Function<QueryResult, List<Row>> rowsFunction =
   *       new Function<QueryResult, List<Row>>() {
   *         public List<Row> apply(QueryResult queryResult) {
   *           return queryResult.getRows();
   *         }
   *       };
   *   ListenableFuture<List<Row>> rowsFuture =
   *       transform(queryFuture, rowsFunction);
   * }</pre>
   *
   * <p>Note: This overload of {@code transform} is designed for cases in which
   * the transformation is fast and lightweight, as the method does not accept
   * an {@code Executor} to perform the the work in. For heavier
   * transformations, this overload carries some caveats: First, the thread that
   * the transformation runs in depends on whether the input {@code Future} is
   * done at the time {@code transform} is called. In particular, if called
   * late, {@code transform} will perform the transformation in the thread that
   * called {@code transform}. Second, transformations may run in an internal
   * thread of the system responsible for the input {@code Future}, such as an
   * RPC network thread. Finally, during the execution of a {@link
   * MoreExecutors#sameThreadExecutor sameThreadExecutor} transformation, all
   * other registered but unexecuted listeners are prevented from running, even
   * if those listeners are to run in other executors.
   *
   * <p>The returned {@code Future} attempts to keep its cancellation state in
   * sync with that of the input future. That is, if the returned {@code Future}
   * is cancelled, it will attempt to cancel the input, and if the input is
   * cancelled, the returned {@code Future} will receive a callback in which it
   * will attempt to cancel itself.
   *
   * <p>An example use of this method is to convert a serializable object
   * returned from an RPC into a POJO.
   *
   * @param future The future to transform
   * @param function A Function to transform the results of the provided future
   *     to the results of the returned future.  This will be run in the thread
   *     that notifies input it is complete.
   * @return A future that holds result of the transformation.
   * @since 9.0 (in 1.0 as {@code compose})
   */
  public static <I, O> ListenableFuture<O> transform(ListenableFuture<I> future,
      final Function<? super I, ? extends O> function) {
    return transform(future, function, MoreExecutors.sameThreadExecutor());
  }

  /**
   * Returns a new {@code ListenableFuture} whose result is the product of
   * applying the given {@code Function} to the result of the given {@code
   * Future}. Example:
   *
   * <pre>   {@code
   *   ListenableFuture<QueryResult> queryFuture = ...;
   *   Function<QueryResult, List<Row>> rowsFunction =
   *       new Function<QueryResult, List<Row>>() {
   *         public List<Row> apply(QueryResult queryResult) {
   *           return queryResult.getRows();
   *         }
   *       };
   *   ListenableFuture<List<Row>> rowsFuture =
   *       transform(queryFuture, rowsFunction, executor);
   * }</pre>
   *
   * <p>The returned {@code Future} attempts to keep its cancellation state in
   * sync with that of the input future. That is, if the returned {@code Future}
   * is cancelled, it will attempt to cancel the input, and if the input is
   * cancelled, the returned {@code Future} will receive a callback in which it
   * will attempt to cancel itself.
   *
   * <p>An example use of this method is to convert a serializable object
   * returned from an RPC into a POJO.
   *
   * <p>Note: For cases in which the transformation is fast and lightweight,
   * consider {@linkplain Futures#transform(ListenableFuture, Function) the
   * other overload} or explicit use of {@link
   * MoreExecutors#sameThreadExecutor}. For heavier transformations, this choice
   * carries some caveats: First, the thread that the transformation runs in
   * depends on whether the input {@code Future} is done at the time {@code
   * transform} is called. In particular, if called late, {@code transform} will
   * perform the transformation in the thread that called {@code transform}.
   * Second, transformations may run in an internal thread of the system
   * responsible for the input {@code Future}, such as an RPC network thread.
   * Finally, during the execution of a {@link MoreExecutors#sameThreadExecutor
   * sameThreadExecutor} transformation, all other registered but unexecuted
   * listeners are prevented from running, even if those listeners are to run
   * in other executors.
   *
   * @param future The future to transform
   * @param function A Function to transform the results of the provided future
   *     to the results of the returned future.
   * @param exec Executor to run the function in.
   * @return A future that holds result of the transformation.
   * @since 9.0 (in 2.0 as {@code compose})
   */
  public static <I, O> ListenableFuture<O> transform(ListenableFuture<I> future,
      final Function<? super I, ? extends O> function, Executor exec) {
    checkNotNull(function);
    Function<I, ListenableFuture<O>> wrapperFunction
        = new Function<I, ListenableFuture<O>>() {
            @Override public ListenableFuture<O> apply(I input) {
              O output = function.apply(input);
              return immediateFuture(output);
            }
        };
    return chain(future, wrapperFunction, exec);
  }

  /**
   * Like {@link #transform(ListenableFuture, Function)} except that the
   * transformation {@code function} is invoked on each call to
   * {@link Future#get() get()} on the returned future.
   *
   * <p>The returned {@code Future} reflects the input's cancellation
   * state directly, and any attempt to cancel the returned Future is likewise
   * passed through to the input Future.
   *
   * <p>Note that calls to {@linkplain Future#get(long, TimeUnit) timed get}
   * only apply the timeout to the execution of the underlying {@code Future},
   * <em>not</em> to the execution of the transformation function.
   *
   * <p>The primary audience of this method is callers of {@code transform}
   * who don't have a {@code ListenableFuture} available and
   * do not mind repeated, lazy function evaluation.
   *
   * @param future The future to transform
   * @param function A Function to transform the results of the provided future
   *     to the results of the returned future.
   * @return A future that returns the result of the transformation.
   * @since 10.0
   */
  @Beta
  public static <I, O> Future<O> lazyTransform(final Future<I> future,
      final Function<? super I, ? extends O> function) {
    checkNotNull(future);
    checkNotNull(function);
    return new Future<O>() {

      @Override
      public boolean cancel(boolean mayInterruptIfRunning) {
        return future.cancel(mayInterruptIfRunning);
      }

      @Override
      public boolean isCancelled() {
        return future.isCancelled();
      }

      @Override
      public boolean isDone() {
        return future.isDone();
      }

      @Override
      public O get() throws InterruptedException, ExecutionException {
        return applyTransformation(future.get());
      }

      @Override
      public O get(long timeout, TimeUnit unit)
          throws InterruptedException, ExecutionException, TimeoutException {
        return applyTransformation(future.get(timeout, unit));
      }

      private O applyTransformation(I input) throws ExecutionException {
        try {
          return function.apply(input);
        } catch (Throwable t) {
          throw new ExecutionException(t);
        }
      }
    };
  }

  /**
   * Returns a new {@code Future} whose result is the product of applying the
   * given {@code Function} to the result of the given {@code Future}. Example:
   *
   * <pre>   {@code
   *   Future<QueryResult> queryFuture = ...;
   *   Function<QueryResult, List<Row>> rowsFunction =
   *       new Function<QueryResult, List<Row>>() {
   *         public List<Row> apply(QueryResult queryResult) {
   *           return queryResult.getRows();
   *         }
   *       };
   *   Future<List<Row>> rowsFuture = transform(queryFuture, rowsFunction);
   * }</pre>
   *
   * <p>Each call to {@code Future<O>.get(*)} results in a call to
   * {@code Future<I>.get(*)}, but {@code function} is only applied once, so it
   * is assumed that {@code Future<I>.get(*)} is idempotent.
   *
   * <p>When calling {@link Future#get(long, TimeUnit)} on the returned
   * future, the timeout only applies to the future passed in to this method.
   * Any additional time taken by applying {@code function} is not considered.
   * (Exception: If the input future is a {@link ListenableFuture}, timeouts
   * will be strictly enforced.)
   *
   * @param future The future to transform
   * @param function A Function to transform the results of the provided future
   *     to the results of the returned future.  This will be run in the thread
   *     that calls one of the varieties of {@code get()}.
   * @return A future that computes result of the transformation
   * @since 9.0 (in 1.0 as {@code compose})
   * @deprecated Obtain a {@code ListenableFuture} (following the advice in its
   *     documentation) and use {@link #transform(ListenableFuture, Function)}
   *     or use {@link #lazyTransform(Future, Function)}, which will apply the
   *     transformation on each call to {@code get()}.
   *     <b>This method is scheduled for deletion from Guava in Guava release
   *     11.0.</b>
   */
  @Deprecated
  public static <I, O> Future<O> transform(final Future<I> future,
      final Function<? super I, ? extends O> function) {
    if (future instanceof ListenableFuture) {
      return transform((ListenableFuture<I>) future, function);
    }
    checkNotNull(future);
    checkNotNull(function);
    return new Future<O>() {

      /*
       * Concurrency detail:
       *
       * <p>To preserve the idempotency of calls to this.get(*) calls to the
       * function are only applied once. A lock is required to prevent multiple
       * applications of the function. The calls to future.get(*) are performed
       * outside the lock, as is required to prevent calls to
       * get(long, TimeUnit) to persist beyond their timeout.
       *
       * <p>Calls to future.get(*) on every call to this.get(*) also provide
       * the cancellation behavior for this.
       *
       * <p>(Consider: in thread A, call get(), in thread B call get(long,
       * TimeUnit). Thread B may have to wait for Thread A to finish, which
       * would be unacceptable.)
       *
       * <p>Note that each call to Future<O>.get(*) results in a call to
       * Future<I>.get(*), but the function is only applied once, so
       * Future<I>.get(*) is assumed to be idempotent.
       */

      private final Object lock = new Object();
      private boolean set = false;
      private O value = null;
      private ExecutionException exception = null;

      @Override
      public O get() throws InterruptedException, ExecutionException {
        return apply(future.get());
      }

      @Override
      public O get(long timeout, TimeUnit unit) throws InterruptedException,
          ExecutionException, TimeoutException {
        return apply(future.get(timeout, unit));
      }

      private O apply(I raw) throws ExecutionException {
        synchronized (lock) {
          if (!set) {
            try {
              value = function.apply(raw);
            } catch (RuntimeException e) {
              exception = new ExecutionException(e);
            } catch (Error e) {
              exception = new ExecutionException(e);
            }
            set = true;
          }

          if (exception != null) {
            throw exception;
          }
          return value;
        }
      }

      @Override
      public boolean cancel(boolean mayInterruptIfRunning) {
        return future.cancel(mayInterruptIfRunning);
      }

      @Override
      public boolean isCancelled() {
        return future.isCancelled();
      }

      @Override
      public boolean isDone() {
        return future.isDone();
      }
    };
  }

  /**
   * An implementation of {@code ListenableFuture} that also implements
   * {@code Runnable} so that it can be used to nest ListenableFutures.
   * Once the passed-in {@code ListenableFuture} is complete, it calls the
   * passed-in {@code Function} to generate the result.
   *
   * <p>If the function throws any checked exceptions, they should be wrapped
   * in a {@code UndeclaredThrowableException} so that this class can get
   * access to the cause.
   */
  private static class ChainingListenableFuture<I, O>
      extends AbstractFuture<O> implements Runnable {

    private Function<? super I, ? extends ListenableFuture<? extends O>>
        function;
    private ListenableFuture<? extends I> inputFuture;
    private volatile ListenableFuture<? extends O> outputFuture;
    private final BlockingQueue<Boolean> mayInterruptIfRunningChannel =
        new LinkedBlockingQueue<Boolean>(1);
    private final CountDownLatch outputCreated = new CountDownLatch(1);

    private ChainingListenableFuture(
        Function<? super I, ? extends ListenableFuture<? extends O>> function,
        ListenableFuture<? extends I> inputFuture) {
      this.function = checkNotNull(function);
      this.inputFuture = checkNotNull(inputFuture);
    }

    /**
     * Delegate the get() to the input and output futures, in case
     * their implementations defer starting computation until their
     * own get() is invoked.
     */
    @Override
    public O get() throws InterruptedException, ExecutionException {
      if (!isDone()) {
        // Invoking get on the inputFuture will ensure our own run()
        // method below is invoked as a listener when inputFuture sets
        // its value.  Therefore when get() returns we should then see
        // the outputFuture be created.
        ListenableFuture<? extends I> inputFuture = this.inputFuture;
        if (inputFuture != null) {
          inputFuture.get();
        }

        // If our listener was scheduled to run on an executor we may
        // need to wait for our listener to finish running before the
        // outputFuture has been constructed by the function.
        outputCreated.await();

        // Like above with the inputFuture, we have a listener on
        // the outputFuture that will set our own value when its
        // value is set.  Invoking get will ensure the output can
        // complete and invoke our listener, so that we can later
        // get the result.
        ListenableFuture<? extends O> outputFuture = this.outputFuture;
        if (outputFuture != null) {
          outputFuture.get();
        }
      }
      return super.get();
    }

    /**
     * Delegate the get() to the input and output futures, in case
     * their implementations defer starting computation until their
     * own get() is invoked.
     */
    @Override
    public O get(long timeout, TimeUnit unit) throws TimeoutException,
        ExecutionException, InterruptedException {
      if (!isDone()) {
        // Use a single time unit so we can decrease remaining timeout
        // as we wait for various phases to complete.
        if (unit != NANOSECONDS) {
          timeout = NANOSECONDS.convert(timeout, unit);
          unit = NANOSECONDS;
        }

        // Invoking get on the inputFuture will ensure our own run()
        // method below is invoked as a listener when inputFuture sets
        // its value.  Therefore when get() returns we should then see
        // the outputFuture be created.
        ListenableFuture<? extends I> inputFuture = this.inputFuture;
        if (inputFuture != null) {
          long start = System.nanoTime();
          inputFuture.get(timeout, unit);
          timeout -= Math.max(0, System.nanoTime() - start);
        }

        // If our listener was scheduled to run on an executor we may
        // need to wait for our listener to finish running before the
        // outputFuture has been constructed by the function.
        long start = System.nanoTime();
        if (!outputCreated.await(timeout, unit)) {
          throw new TimeoutException();
        }
        timeout -= Math.max(0, System.nanoTime() - start);

        // Like above with the inputFuture, we have a listener on
        // the outputFuture that will set our own value when its
        // value is set.  Invoking get will ensure the output can
        // complete and invoke our listener, so that we can later
        // get the result.
        ListenableFuture<? extends O> outputFuture = this.outputFuture;
        if (outputFuture != null) {
          outputFuture.get(timeout, unit);
        }
      }
      return super.get(timeout, unit);
    }

    @Override
    public boolean cancel(boolean mayInterruptIfRunning) {
      /*
       * Our additional cancellation work needs to occur even if
       * !mayInterruptIfRunning, so we can't move it into interruptTask().
       */
      if (super.cancel(mayInterruptIfRunning)) {
        // This should never block since only one thread is allowed to cancel
        // this Future.
        putUninterruptibly(mayInterruptIfRunningChannel, mayInterruptIfRunning);
        cancel(inputFuture, mayInterruptIfRunning);
        cancel(outputFuture, mayInterruptIfRunning);
        return true;
      }
      return false;
    }

    private void cancel(@Nullable Future<?> future,
        boolean mayInterruptIfRunning) {
      if (future != null) {
        future.cancel(mayInterruptIfRunning);
      }
    }

    @Override
    public void run() {
      try {
        I sourceResult;
        try {
          sourceResult = getUninterruptibly(inputFuture);
        } catch (CancellationException e) {
          // Cancel this future and return.
          // At this point, inputFuture is cancelled and outputFuture doesn't
          // exist, so the value of mayInterruptIfRunning is irrelevant.
          cancel(false);
          return;
        } catch (ExecutionException e) {
          // Set the cause of the exception as this future's exception
          setException(e.getCause());
          return;
        }

        final ListenableFuture<? extends O> outputFuture = this.outputFuture =
            function.apply(sourceResult);
        if (isCancelled()) {
          // Handles the case where cancel was called while the function was
          // being applied.
          // There is a gap in cancel(boolean) between calling sync.cancel()
          // and storing the value of mayInterruptIfRunning, so this thread
          // needs to block, waiting for that value.
          outputFuture.cancel(
              takeUninterruptibly(mayInterruptIfRunningChannel));
          this.outputFuture = null;
          return;
        }
        outputFuture.addListener(new Runnable() {
            @Override
            public void run() {
              try {
                // Here it would have been nice to have had an
                // UninterruptibleListenableFuture, but we don't want to start a
                // combinatorial explosion of interfaces, so we have to make do.
                set(getUninterruptibly(outputFuture));
              } catch (CancellationException e) {
                // Cancel this future and return.
                // At this point, inputFuture and outputFuture are done, so the
                // value of mayInterruptIfRunning is irrelevant.
                cancel(false);
                return;
              } catch (ExecutionException e) {
                // Set the cause of the exception as this future's exception
                setException(e.getCause());
              } finally {
                // Don't pin inputs beyond completion
                ChainingListenableFuture.this.outputFuture = null;
              }
            }
          }, MoreExecutors.sameThreadExecutor());
      } catch (UndeclaredThrowableException e) {
        // Set the cause of the exception as this future's exception
        setException(e.getCause());
      } catch (RuntimeException e) {
        // This exception is irrelevant in this thread, but useful for the
        // client
        setException(e);
      } catch (Error e) {
        // Propagate errors up ASAP - our superclass will rethrow the error
        setException(e);
      } finally {
        // Don't pin inputs beyond completion
        function = null;
        inputFuture = null;
        // Allow our get routines to examine outputFuture now.
        outputCreated.countDown();
      }
    }
  }

  /**
   * Creates a new {@code ListenableFuture} whose value is a list containing the
   * values of all its input futures, if all succeed. If any input fails, the
   * returned future fails.
   *
   * <p>The list of results is in the same order as the input list.
   *
   * <p>Canceling this future does not cancel any of the component futures;
   * however, if any of the provided futures fails or is canceled, this one is,
   * too.
   *
   * @param futures futures to combine
   * @return a future that provides a list of the results of the component
   *         futures
   * @since 10.0
   */
  @Beta
  public static <V> ListenableFuture<List<V>> allAsList(
      ListenableFuture<? extends V>... futures) {
    return new ListFuture<V>(ImmutableList.copyOf(futures), true,
        MoreExecutors.sameThreadExecutor());
  }

  /**
   * Creates a new {@code ListenableFuture} whose value is a list containing the
   * values of all its input futures, if all succeed. If any input fails, the
   * returned future fails.
   *
   * <p>The list of results is in the same order as the input list.
   *
   * <p>Canceling this future does not cancel any of the component futures;
   * however, if any of the provided futures fails or is canceled, this one is,
   * too.
   *
   * @param futures futures to combine
   * @return a future that provides a list of the results of the component
   *         futures
   * @since 10.0
   */
  @Beta
  public static <V> ListenableFuture<List<V>> allAsList(
      Iterable<? extends ListenableFuture<? extends V>> futures) {
    return new ListFuture<V>(ImmutableList.copyOf(futures), true,
        MoreExecutors.sameThreadExecutor());
  }

  /**
   * Creates a new {@code ListenableFuture} whose value is a list containing the
   * values of all its successful input futures. The list of results is in the
   * same order as the input list, and if any of the provided futures fails or
   * is canceled, its corresponding position will contain {@code null} (which is
   * indistinguishable from the future having a successful value of
   * {@code null}).
   *
   * @param futures futures to combine
   * @return a future that provides a list of the results of the component
   *         futures
   * @since 10.0
   */
  @Beta
  public static <V> ListenableFuture<List<V>> successfulAsList(
      ListenableFuture<? extends V>... futures) {
    return new ListFuture<V>(ImmutableList.copyOf(futures), false,
        MoreExecutors.sameThreadExecutor());
  }

  /**
   * Creates a new {@code ListenableFuture} whose value is a list containing the
   * values of all its successful input futures. The list of results is in the
   * same order as the input list, and if any of the provided futures fails or
   * is canceled, its corresponding position will contain {@code null} (which is
   * indistinguishable from the future having a successful value of
   * {@code null}).
   *
   * @param futures futures to combine
   * @return a future that provides a list of the results of the component
   *         futures
   * @since 10.0
   */
  @Beta
  public static <V> ListenableFuture<List<V>> successfulAsList(
      Iterable<? extends ListenableFuture<? extends V>> futures) {
    return new ListFuture<V>(ImmutableList.copyOf(futures), false,
        MoreExecutors.sameThreadExecutor());
  }

  /**
   * Registers separate success and failure callbacks to be run when the {@code
   * Future}'s computation is {@linkplain java.util.concurrent.Future#isDone()
   * complete} or, if the computation is already complete, immediately.
   *
   * <p>There is no guaranteed ordering of execution of callbacks, but any
   * callback added through this method is guaranteed to be called once the
   * computation is complete.
   *
   * Example: <pre> {@code
   * ListenableFuture<QueryResult> future = ...;
   * addCallback(future,
   *     new FutureCallback<QueryResult> {
   *       public void onSuccess(QueryResult result) {
   *         storeInCache(result);
   *       }
   *       public void onFailure(Throwable t) {
   *         reportError(t);
   *       }
   *     });}</pre>
   *
   * <p>Note: This overload of {@code addCallback} is designed for cases in
   * which the callack is fast and lightweight, as the method does not accept
   * an {@code Executor} to perform the the work in. For heavier
   * callbacks, this overload carries some caveats: First, the thread that
   * the callback runs in depends on whether the input {@code Future} is
   * done at the time {@code addCallback} is called. In particular, if called
   * late, {@code addCallback} will execute the callback in the thread that
   * called {@code addCallback}. Second, callbacks may run in an internal
   * thread of the system responsible for the input {@code Future}, such as an
   * RPC network thread. Finally, during the execution of a {@link
   * MoreExecutors#sameThreadExecutor sameThreadExecutor} callback, all other
   * registered but unexecuted listeners are prevented from running, even if
   * those listeners are to run in other executors.
   *
   * <p>For a more general interface to attach a completion listener to a
   * {@code Future}, see {@link ListenableFuture#addListener addListener}.
   *
   * @param future The future attach the callback to.
   * @param callback The callback to invoke when {@code future} is completed.
   * @since 10.0
   */
  public static <V> void addCallback(ListenableFuture<V> future,
      FutureCallback<? super V> callback) {
    addCallback(future, callback, MoreExecutors.sameThreadExecutor());
  }

  /**
   * Registers separate success and failure callbacks to be run when the {@code
   * Future}'s computation is {@linkplain java.util.concurrent.Future#isDone()
   * complete} or, if the computation is already complete, immediately.
   *
   * <p>The callback is run in {@code executor}.
   * There is no guaranteed ordering of execution of callbacks, but any
   * callback added through this method is guaranteed to be called once the
   * computation is complete.
   *
   * Example: <pre> {@code
   * ListenableFuture<QueryResult> future = ...;
   * Executor e = ...
   * addCallback(future, e,
   *     new FutureCallback<QueryResult> {
   *       public void onSuccess(QueryResult result) {
   *         storeInCache(result);
   *       }
   *       public void onFailure(Throwable t) {
   *         reportError(t);
   *       }
   *     });}</pre>
   *
   * When the callback is fast and lightweight consider
   * {@linkplain Futures#addCallback(ListenableFuture, FutureCallback)
   * the other overload} or explicit use of
   * {@link MoreExecutors#sameThreadExecutor() sameThreadExecutor}. For heavier
   * callbacks, this choice carries some caveats: First, the thread that
   * the callback runs in depends on whether the input {@code Future} is
   * done at the time {@code addCallback} is called. In particular, if called
   * late, {@code addCallback} will execute the callback in the thread that
   * called {@code addCallback}. Second, callbacks may run in an internal
   * thread of the system responsible for the input {@code Future}, such as an
   * RPC network thread. Finally, during the execution of a {@link
   * MoreExecutors#sameThreadExecutor sameThreadExecutor} callback, all other
   * registered but unexecuted listeners are prevented from running, even if
   * those listeners are to run in other executors.
   *
   * <p>For a more general interface to attach a completion listener to a
   * {@code Future}, see {@link ListenableFuture#addListener addListener}.
   *
   * @param future The future attach the callback to.
   * @param callback The callback to invoke when {@code future} is completed.
   * @param executor The executor to run {@code callback} when the future
   *    completes.
   * @since 10.0
   */
  public static <V> void addCallback(final ListenableFuture<V> future,
      final FutureCallback<? super V> callback, Executor executor) {
    Preconditions.checkNotNull(callback);
    Runnable callbackListener = new Runnable() {
      @Override
      public void run() {
        try {
          // TODO(user): (Before Guava release), validate that this
          // is the thing for IE.
          V value = getUninterruptibly(future);
          callback.onSuccess(value);
        } catch (ExecutionException e) {
          callback.onFailure(e.getCause());
        } catch (RuntimeException e) {
          callback.onFailure(e);
        } catch (Error e) {
          callback.onFailure(e);
        }
      }
    };
    future.addListener(callbackListener, executor);
  }

  /**
   * Returns the result of {@link Future#get()}, converting most exceptions to a
   * new instance of the given checked exception type. This reduces boilerplate
   * for a common use of {@code Future} in which it is unnecessary to
   * programmatically distinguish between exception types or to extract other
   * information from the exception instance.
   *
   * <p>Exceptions from {@code Future.get} are treated as follows:
   * <ul>
   * <li>Any {@link ExecutionException} has its <i>cause</i> wrapped in an
   *     {@code X} if the cause is a checked exception, an {@link
   *     UncheckedExecutionException} if the cause is a {@code
   *     RuntimeException}, or an {@link ExecutionError} if the cause is an
   *     {@code Error}.
   * <li>Any {@link InterruptedException} is wrapped in an {@code X} (after
   *     restoring the interrupt).
   * <li>Any {@link CancellationException} is propagated untouched, as is any
   *     other {@link RuntimeException} (though {@code get} implementations are
   *     discouraged from throwing such exceptions).
   * </ul>
   *
   * The overall principle is to continue to treat every checked exception as a
   * checked exception, every unchecked exception as an unchecked exception, and
   * every error as an error. In addition, the cause of any {@code
   * ExecutionException} is wrapped in order to ensure that the new stack trace
   * matches that of the current thread.
   *
   * <p>Instances of {@code exceptionClass} are created by choosing an arbitrary
   * public constructor that accepts zero or more arguments, all of type {@code
   * String} or {@code Throwable} (preferring constructors with at least one
   * {@code String}) and calling the constructor via reflection. If the
   * exception did not already have a cause, one is set by calling {@link
   * Throwable#initCause(Throwable)} on it. If no such constructor exists, an
   * {@code IllegalArgumentException} is thrown.
   *
   * @throws X if {@code get} throws any checked exception except for an {@code
   *         ExecutionException} whose cause is not itself a checked exception
   * @throws UncheckedExecutionException if {@code get} throws an {@code
   *         ExecutionException} with a {@code RuntimeException} as its cause
   * @throws ExecutionError if {@code get} throws an {@code ExecutionException}
   *         with an {@code Error} as its cause
   * @throws CancellationException if {@code get} throws a {@code
   *         CancellationException}
   * @throws IllegalArgumentException if {@code exceptionClass} extends {@code
   *         RuntimeException} or does not have a suitable constructor
   * @since 10.0
   */
  @Beta
  public static <V, X extends Exception> V get(
      Future<V> future, Class<X> exceptionClass) throws X {
    checkNotNull(future);
    checkArgument(!RuntimeException.class.isAssignableFrom(exceptionClass),
        "Futures.get exception type (%s) must not be a RuntimeException",
        exceptionClass);
    try {
      return future.get();
    } catch (InterruptedException e) {
      currentThread().interrupt();
      throw newWithCause(exceptionClass, e);
    } catch (ExecutionException e) {
      wrapAndThrowExceptionOrError(e.getCause(), exceptionClass);
      throw new AssertionError();
    }
  }

  /**
   * Returns the result of {@link Future#get(long, TimeUnit)}, converting most
   * exceptions to a new instance of the given checked exception type. This
   * reduces boilerplate for a common use of {@code Future} in which it is
   * unnecessary to programmatically distinguish between exception types or to
   * extract other information from the exception instance.
   *
   * <p>Exceptions from {@code Future.get} are treated as follows:
   * <ul>
   * <li>Any {@link ExecutionException} has its <i>cause</i> wrapped in an
   *     {@code X} if the cause is a checked exception, an {@link
   *     UncheckedExecutionException} if the cause is a {@code
   *     RuntimeException}, or an {@link ExecutionError} if the cause is an
   *     {@code Error}.
   * <li>Any {@link InterruptedException} is wrapped in an {@code X} (after
   *     restoring the interrupt).
   * <li>Any {@link TimeoutException} is wrapped in an {@code X}.
   * <li>Any {@link CancellationException} is propagated untouched, as is any
   *     other {@link RuntimeException} (though {@code get} implementations are
   *     discouraged from throwing such exceptions).
   * </ul>
   *
   * The overall principle is to continue to treat every checked exception as a
   * checked exception, every unchecked exception as an unchecked exception, and
   * every error as an error. In addition, the cause of any {@code
   * ExecutionException} is wrapped in order to ensure that the new stack trace
   * matches that of the current thread.
   *
   * <p>Instances of {@code exceptionClass} are created by choosing an arbitrary
   * public constructor that accepts zero or more arguments, all of type {@code
   * String} or {@code Throwable} (preferring constructors with at least one
   * {@code String}) and calling the constructor via reflection. If the
   * exception did not already have a cause, one is set by calling {@link
   * Throwable#initCause(Throwable)} on it. If no such constructor exists, an
   * {@code IllegalArgumentException} is thrown.
   *
   * @throws X if {@code get} throws any checked exception except for an {@code
   *         ExecutionException} whose cause is not itself a checked exception
   * @throws UncheckedExecutionException if {@code get} throws an {@code
   *         ExecutionException} with a {@code RuntimeException} as its cause
   * @throws ExecutionError if {@code get} throws an {@code ExecutionException}
   *         with an {@code Error} as its cause
   * @throws CancellationException if {@code get} throws a {@code
   *         CancellationException}
   * @throws IllegalArgumentException if {@code exceptionClass} extends {@code
   *         RuntimeException} or does not have a suitable constructor
   * @since 10.0
   */
  @Beta
  public static <V, X extends Exception> V get(
      Future<V> future, long timeout, TimeUnit unit, Class<X> exceptionClass)
      throws X {
    checkNotNull(future);
    checkNotNull(unit);
    checkArgument(!RuntimeException.class.isAssignableFrom(exceptionClass),
        "Futures.get exception type (%s) must not be a RuntimeException",
        exceptionClass);
    try {
      return future.get(timeout, unit);
    } catch (InterruptedException e) {
      currentThread().interrupt();
      throw newWithCause(exceptionClass, e);
    } catch (TimeoutException e) {
      throw newWithCause(exceptionClass, e);
    } catch (ExecutionException e) {
      wrapAndThrowExceptionOrError(e.getCause(), exceptionClass);
      throw new AssertionError();
    }
  }

  private static <X extends Exception> void wrapAndThrowExceptionOrError(
      Throwable cause, Class<X> exceptionClass) throws X {
    if (cause instanceof Error) {
      throw new ExecutionError((Error) cause);
    }
    if (cause instanceof RuntimeException) {
      throw new UncheckedExecutionException(cause);
    }
    throw newWithCause(exceptionClass, cause);
  }

  /**
   * Returns the result of calling {@link Future#get()} uninterruptibly on a
   * task known not to throw a checked exception. This makes {@code Future} more
   * suitable for lightweight, fast-running tasks that, barring bugs in the
   * code, will not fail. This gives it exception-handling behavior similar to
   * that of {@code ForkJoinTask.join}.
   *
   * <p>Exceptions from {@code Future.get} are treated as follows:
   * <ul>
   * <li>Any {@link ExecutionException} has its <i>cause</i> wrapped in an
   *     {@link UncheckedExecutionException} (if the cause is an {@code
   *     Exception}) or {@link ExecutionError} (if the cause is an {@code
   *     Error}).
   * <li>Any {@link InterruptedException} causes a retry of the {@code get}
   *     call. The interrupt is restored before {@code getUnchecked} returns.
   * <li>Any {@link CancellationException} is propagated untouched. So is any
   *     other {@link RuntimeException} ({@code get} implementations are
   *     discouraged from throwing such exceptions).
   * </ul>
   *
   * The overall principle is to eliminate all checked exceptions: to loop to
   * avoid {@code InterruptedException}, to pass through {@code
   * CancellationException}, and to wrap any exception from the underlying
   * computation in an {@code UncheckedExecutionException} or {@code
   * ExecutionError}.
   *
   * <p>For an uninterruptible {@code get} that preserves other exceptions, see
   * {@link Uninterruptibles#getUninterruptibly(Future)}.
   *
   * @throws UncheckedExecutionException if {@code get} throws an {@code
   *         ExecutionException} with an {@code Exception} as its cause
   * @throws ExecutionError if {@code get} throws an {@code ExecutionException}
   *         with an {@code Error} as its cause
   * @throws CancellationException if {@code get} throws a {@code
   *         CancellationException}
   * @since 10.0
   */
  @Beta
  public static <V> V getUnchecked(Future<V> future) {
    checkNotNull(future);
    try {
      return getUninterruptibly(future);
    } catch (ExecutionException e) {
      wrapAndThrowUnchecked(e.getCause());
      throw new AssertionError();
    }
  }

  private static void wrapAndThrowUnchecked(Throwable cause) {
    if (cause instanceof Error) {
      throw new ExecutionError((Error) cause);
    }
    /*
     * It's a non-Error, non-Exception Throwable. From my survey of such
     * classes, I believe that most users intended to extend Exception, so we'll
     * treat it like an Exception.
     */
    throw new UncheckedExecutionException(cause);
  }

  /*
   * TODO(user): FutureChecker interface for these to be static methods on? If
   * so, refer to it in the (static-method) Futures.get documentation
   */

  /*
   * Arguably we don't need a timed getUnchecked because any operation slow
   * enough to require a timeout is heavyweight enough to throw a checked
   * exception and therefore be inappropriate to use with getUnchecked. Further,
   * it's not clear that converting the checked TimeoutException to a
   * RuntimeException -- especially to an UncheckedExecutionException, since it
   * wasn't thrown by the computation -- makes sense, and if we don't convert
   * it, the user still has to write a try-catch block.
   *
   * If you think you would use this method, let us know.
   */

  private static <X extends Exception> X newWithCause(
      Class<X> exceptionClass, Throwable cause) {
    // getConstructors() guarantees this as long as we don't modify the array.
    @SuppressWarnings("unchecked")
    List<Constructor<X>> constructors =
        (List) Arrays.asList(exceptionClass.getConstructors());
    for (Constructor<X> constructor : preferringStrings(constructors)) {
      @Nullable X instance = newFromConstructor(constructor, cause);
      if (instance != null) {
        if (instance.getCause() == null) {
          instance.initCause(cause);
        }
        return instance;
      }
    }
    throw new IllegalArgumentException(
        "No appropriate constructor for exception of type " + exceptionClass
            + " in response to chained exception", cause);
  }

  private static <X extends Exception> List<Constructor<X>>
      preferringStrings(List<Constructor<X>> constructors) {
    return WITH_STRING_PARAM_FIRST.sortedCopy(constructors);
  }

  private static final Ordering<Constructor<?>> WITH_STRING_PARAM_FIRST =
      Ordering.natural().onResultOf(new Function<Constructor<?>, Boolean>() {
        @Override public Boolean apply(Constructor<?> input) {
          return asList(input.getParameterTypes()).contains(String.class);
        }
      }).reverse();

  @Nullable private static <X> X newFromConstructor(
      Constructor<X> constructor, Throwable cause) {
    Class<?>[] paramTypes = constructor.getParameterTypes();
    Object[] params = new Object[paramTypes.length];
    for (int i = 0; i < paramTypes.length; i++) {
      Class<?> paramType = paramTypes[i];
      if (paramType.equals(String.class)) {
        params[i] = cause.toString();
      } else if (paramType.equals(Throwable.class)) {
        params[i] = cause;
      } else {
        return null;
      }
    }
    try {
      return constructor.newInstance(params);
    } catch (IllegalArgumentException e) {
      return null;
    } catch (InstantiationException e) {
      return null;
    } catch (IllegalAccessException e) {
      return null;
    } catch (InvocationTargetException e) {
      return null;
    }
  }

  /**
   * Class that implements {@link #allAsList} and {@link #successfulAsList}.
   * The idea is to create a (null-filled) List and register a listener with
   * each component future to fill out the value in the List when that future
   * completes.
   */
  private static class ListFuture<V> extends AbstractFuture<List<V>> {
    ImmutableList<? extends ListenableFuture<? extends V>> futures;
    final boolean allMustSucceed;
    final AtomicInteger remaining;
    List<V> values;

    /**
     * Constructor.
     *
     * @param futures all the futures to build the list from
     * @param allMustSucceed whether a single failure or cancellation should
     *        propagate to this future
     * @param listenerExecutor used to run listeners on all the passed in
     *        futures.
     */
    ListFuture(
        final ImmutableList<? extends ListenableFuture<? extends V>> futures,
        final boolean allMustSucceed, final Executor listenerExecutor) {
      this.futures = futures;
      this.values = Lists.newArrayListWithCapacity(futures.size());
      this.allMustSucceed = allMustSucceed;
      this.remaining = new AtomicInteger(futures.size());

      init(listenerExecutor);
    }

    private void init(final Executor listenerExecutor) {
      // First, schedule cleanup to execute when the Future is done.
      addListener(new Runnable() {
        @Override
        public void run() {
          // By now the values array has either been set as the Future's value,
          // or (in case of failure) is no longer useful.
          ListFuture.this.values = null;

          // Let go of the memory held by other futures
          ListFuture.this.futures = null;
        }
      }, MoreExecutors.sameThreadExecutor());

      // Now begin the "real" initialization.

      // Corner case: List is empty.
      if (futures.isEmpty()) {
        set(Lists.newArrayList(values));
        return;
      }

      // Populate the results list with null initially.
      for (int i = 0; i < futures.size(); ++i) {
        values.add(null);
      }

      // Register a listener on each Future in the list to update
      // the state of this future.
      // Note that if all the futures on the list are done prior to completing
      // this loop, the last call to addListener() will callback to
      // setOneValue(), transitively call our cleanup listener, and set
      // this.futures to null.
      // We store a reference to futures to avoid the NPE.
      ImmutableList<? extends ListenableFuture<? extends V>> localFutures = futures;
      for (int i = 0; i < localFutures.size(); i++) {
        final ListenableFuture<? extends V> listenable = localFutures.get(i);
        final int index = i;
        listenable.addListener(new Runnable() {
          @Override
          public void run() {
            setOneValue(index, listenable);
          }
        }, listenerExecutor);
      }
    }

    /**
     * Sets the value at the given index to that of the given future.
     */
    private void setOneValue(int index, Future<? extends V> future) {
      List<V> localValues = values;
      if (isDone() || localValues == null) {
        // Some other future failed or has been cancelled, causing this one to
        // also be cancelled or have an exception set. This should only happen
        // if allMustSucceed is true.
        checkState(allMustSucceed,
            "Future was done before all dependencies completed");
        return;
      }

      try {
        checkState(future.isDone(),
            "Tried to set value from future which is not done");
        localValues.set(index, getUninterruptibly(future));
      } catch (CancellationException e) {
        if (allMustSucceed) {
          // Set ourselves as cancelled. Let the input futures keep running
          // as some of them may be used elsewhere.
          // (Currently we don't override interruptTask, so
          // mayInterruptIfRunning==false isn't technically necessary.)
          cancel(false);
        }
      } catch (ExecutionException e) {
        if (allMustSucceed) {
          // As soon as the first one fails, throw the exception up.
          // The result of all other inputs is then ignored.
          setException(e.getCause());
        }
      } catch (RuntimeException e) {
        if (allMustSucceed) {
          setException(e);
        }
      } catch (Error e) {
        // Propagate errors up ASAP - our superclass will rethrow the error
        setException(e);
      } finally {
        int newRemaining = remaining.decrementAndGet();
        checkState(newRemaining >= 0, "Less than 0 remaining futures");
        if (newRemaining == 0) {
          localValues = values;
          if (localValues != null) {
            set(Lists.newArrayList(localValues));
          } else {
            checkState(isDone());
          }
        }
      }
    }

    @Override
    public List<V> get() throws InterruptedException, ExecutionException {
      callAllGets();

      // This may still block in spite of the calls above, as the listeners may
      // be scheduled for execution in other threads.
      return super.get();
    }

    /**
     * Calls the get method of all dependency futures to work around a bug in
     * some ListenableFutures where the listeners aren't called until get() is
     * called.
     */
    private void callAllGets() throws InterruptedException {
      List<? extends ListenableFuture<? extends V>> oldFutures = futures;
      if (oldFutures != null && !isDone()) {
        for (ListenableFuture<? extends V> future : oldFutures) {
          // We wait for a little while for the future, but if it's not done,
          // we check that no other futures caused a cancellation or failure.
          // This can introduce a delay of up to 10ms in reporting an exception.
          while (!future.isDone()) {
            try {
              future.get();
            } catch (Error e) {
              throw e;
            } catch (InterruptedException e) {
              throw e;
            } catch (Throwable e) {
              // ExecutionException / CancellationException / RuntimeException
              if (allMustSucceed) {
                return;
              } else {
                continue;
              }
            }
          }
        }
      }
    }
  }

  /**
   * A checked future that uses a function to map from exceptions to the
   * appropriate checked type.
   */
  private static class MappingCheckedFuture<V, X extends Exception> extends
      AbstractCheckedFuture<V, X> {

    final Function<Exception, X> mapper;

    MappingCheckedFuture(ListenableFuture<V> delegate,
        Function<Exception, X> mapper) {
      super(delegate);

      this.mapper = checkNotNull(mapper);
    }

    @Override
    protected X mapException(Exception e) {
      return mapper.apply(e);
    }
  }
}
61 KB in 37 ms with coderay