Guava Class
Php
code posted
by
Beep Boop
created at 08 Nov 16:09, updated at 09 Nov 13:06
Edit
|
Back
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 |
/* * Copyright (C) 2006 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.util.concurrent; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import static com.google.common.base.Preconditions.checkState; import static com.google.common.util.concurrent.MoreExecutors.sameThreadExecutor; import static com.google.common.util.concurrent.Uninterruptibles.getUninterruptibly; import static com.google.common.util.concurrent.Uninterruptibles.putUninterruptibly; import static com.google.common.util.concurrent.Uninterruptibles.takeUninterruptibly; import static java.lang.Thread.currentThread; import static java.util.Arrays.asList; import static java.util.concurrent.TimeUnit.NANOSECONDS; import com.google.common.annotations.Beta; import com.google.common.base.Function; import com.google.common.base.Preconditions; import com.google.common.collect.ImmutableList; import com.google.common.collect.Lists; import com.google.common.collect.Ordering; import java.lang.reflect.Constructor; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.UndeclaredThrowableException; import java.util.Arrays; import java.util.List; import java.util.concurrent.BlockingQueue; import java.util.concurrent.CancellationException; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.Executor; import java.util.concurrent.Future; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; import java.util.concurrent.atomic.AtomicInteger; import javax.annotation.Nullable; /** * Static utility methods pertaining to the {@link Future} interface. * * @author Kevin Bourrillion * @author Nishant Thakkar * @author Sven Mawson * @since 1.0 */ @Beta public final class Futures { private Futures() {} /** * Creates a {@link CheckedFuture} out of a normal {@link ListenableFuture} * and a {@link Function} that maps from {@link Exception} instances into the * appropriate checked type. * * <p>The given mapping function will be applied to an * {@link InterruptedException}, a {@link CancellationException}, or an * {@link ExecutionException} with the actual cause of the exception. * See {@link Future#get()} for details on the exceptions thrown. * * @since 9.0 (source-compatible since 1.0) */ public static <V, X extends Exception> CheckedFuture<V, X> makeChecked( ListenableFuture<V> future, Function<Exception, X> mapper) { return new MappingCheckedFuture<V, X>(checkNotNull(future), mapper); } /** * Creates a {@code ListenableFuture} which has its value set immediately upon * construction. The getters just return the value. This {@code Future} can't * be canceled or timed out and its {@code isDone()} method always returns * {@code true}. */ public static <V> ListenableFuture<V> immediateFuture(@Nullable V value) { SettableFuture<V> future = SettableFuture.create(); future.set(value); return future; } /** * Returns a {@code CheckedFuture} which has its value set immediately upon * construction. * * <p>The returned {@code Future} can't be cancelled, and its {@code isDone()} * method always returns {@code true}. Calling {@code get()} or {@code * checkedGet()} will immediately return the provided value. */ public static <V, X extends Exception> CheckedFuture<V, X> immediateCheckedFuture(@Nullable V value) { SettableFuture<V> future = SettableFuture.create(); future.set(value); return Futures.makeChecked(future, new Function<Exception, X>() { @Override public X apply(Exception e) { throw new AssertionError("impossible"); } }); } /** * Returns a {@code ListenableFuture} which has an exception set immediately * upon construction. * * <p>The returned {@code Future} can't be cancelled, and its {@code isDone()} * method always returns {@code true}. Calling {@code get()} will immediately * throw the provided {@code Throwable} wrapped in an {@code * ExecutionException}. * * @throws Error if the throwable is an {@link Error}. */ public static <V> ListenableFuture<V> immediateFailedFuture( Throwable throwable) { checkNotNull(throwable); SettableFuture<V> future = SettableFuture.create(); future.setException(throwable); return future; } /** * Returns a {@code CheckedFuture} which has an exception set immediately upon * construction. * * <p>The returned {@code Future} can't be cancelled, and its {@code isDone()} * method always returns {@code true}. Calling {@code get()} will immediately * throw the provided {@code Throwable} wrapped in an {@code * ExecutionException}, and calling {@code checkedGet()} will throw the * provided exception itself. * * @throws Error if the throwable is an {@link Error}. */ public static <V, X extends Exception> CheckedFuture<V, X> immediateFailedCheckedFuture(final X exception) { checkNotNull(exception); return makeChecked(Futures.<V>immediateFailedFuture(exception), new Function<Exception, X>() { @Override public X apply(Exception e) { return exception; } }); } /** * Returns a new {@code ListenableFuture} whose result is asynchronously * derived from the result of the given {@code Future}. More precisely, the * returned {@code Future} takes its result from a {@code Future} produced by * applying the given {@code Function} to the result of the original {@code * Future}. Example: * * <pre> {@code * ListenableFuture<RowKey> rowKeyFuture = indexService.lookUp(query); * Function<RowKey, ListenableFuture<QueryResult>> queryFunction = * new Function<RowKey, ListenableFuture<QueryResult>>() { * public ListenableFuture<QueryResult> apply(RowKey rowKey) { * return dataService.read(rowKey); * } * }; * ListenableFuture<QueryResult> queryFuture = * chain(queryFuture, queryFunction); * }</pre> * * <p>Note: This overload of {@code chain} is designed for cases in which the * work of creating the derived future is fast and lightweight, as the method * does not accept an {@code Executor} to perform the the work in. For heavier * derivations, this overload carries some caveats: First, the thread that the * derivation runs in depends on whether the input {@code Future} is done at * the time {@code chain} is called. In particular, if called late, {@code * chain} will run the derivation in the thread that called {@code chain}. * Second, derivations may run in an internal thread of the system responsible * for the input {@code Future}, such as an RPC network thread. Finally, * during the execution of a {@link MoreExecutors#sameThreadExecutor * sameThreadExecutor} {@code chain} function, all other registered but * unexecuted listeners are prevented from running, even if those listeners * are to run in other executors. * * <p>The returned {@code Future} attempts to keep its cancellation state in * sync with that of the input future and that of the future returned by the * chain function. That is, if the returned {@code Future} is cancelled, it * will attempt to cancel the other two, and if either of the other two is * cancelled, the returned {@code Future} will receive a callback in which it * will attempt to cancel itself. * * <p>The typical use for this method would be when a RPC call is dependent on * the results of another RPC. One would call the first RPC (input), create a * function that calls another RPC based on input's result, and then call * chain on input and that function to get a {@code ListenableFuture} of * the result. * * @param input The future to chain * @param function A function to chain the results of the provided future * to the results of the returned future. This will be run in the thread * that notifies input it is complete. * @return A future that holds result of the chain. */ public static <I, O> ListenableFuture<O> chain(ListenableFuture<I> input, Function<? super I, ? extends ListenableFuture<? extends O>> function) { return chain(input, function, MoreExecutors.sameThreadExecutor()); } /** * Returns a new {@code ListenableFuture} whose result is asynchronously * derived from the result of the given {@code Future}. More precisely, the * returned {@code Future} takes its result from a {@code Future} produced by * applying the given {@code Function} to the result of the original {@code * Future}. Example: * * <pre> {@code * ListenableFuture<RowKey> rowKeyFuture = indexService.lookUp(query); * Function<RowKey, ListenableFuture<QueryResult>> queryFunction = * new Function<RowKey, ListenableFuture<QueryResult>>() { * public ListenableFuture<QueryResult> apply(RowKey rowKey) { * return dataService.read(rowKey); * } * }; * ListenableFuture<QueryResult> queryFuture = * chain(queryFuture, queryFunction, executor); * }</pre> * * <p>The returned {@code Future} attempts to keep its cancellation state in * sync with that of the input future and that of the future returned by the * chain function. That is, if the returned {@code Future} is cancelled, it * will attempt to cancel the other two, and if either of the other two is * cancelled, the returned {@code Future} will receive a callback in which it * will attempt to cancel itself. * * <p>Note: For cases in which the work of creating the derived future is fast * and lightweight, consider {@linkplain Futures#chain(ListenableFuture, * Function) the other overload} or explicit use of {@link * MoreExecutors#sameThreadExecutor}. For heavier derivations, this choice * carries some caveats: First, the thread that the derivation runs in depends * on whether the input {@code Future} is done at the time {@code chain} is * called. In particular, if called late, {@code chain} will run the * derivation in the thread that called {@code chain}. Second, derivations may * run in an internal thread of the system responsible for the input {@code * Future}, such as an RPC network thread. Finally, during the execution of a * {@link MoreExecutors#sameThreadExecutor sameThreadExecutor} {@code chain} * function, all other registered but unexecuted listeners are prevented from * running, even if those listeners are to run in other executors. * * @param input The future to chain * @param function A function to chain the results of the provided future * to the results of the returned future. * @param exec Executor to run the function in. * @return A future that holds result of the chain. */ public static <I, O> ListenableFuture<O> chain(ListenableFuture<I> input, Function<? super I, ? extends ListenableFuture<? extends O>> function, Executor exec) { ChainingListenableFuture<I, O> chain = new ChainingListenableFuture<I, O>(function, input); input.addListener(chain, exec); return chain; } /** * Returns a new {@code ListenableFuture} whose result is the product of * applying the given {@code Function} to the result of the given {@code * Future}. Example: * * <pre> {@code * ListenableFuture<QueryResult> queryFuture = ...; * Function<QueryResult, List<Row>> rowsFunction = * new Function<QueryResult, List<Row>>() { * public List<Row> apply(QueryResult queryResult) { * return queryResult.getRows(); * } * }; * ListenableFuture<List<Row>> rowsFuture = * transform(queryFuture, rowsFunction); * }</pre> * * <p>Note: This overload of {@code transform} is designed for cases in which * the transformation is fast and lightweight, as the method does not accept * an {@code Executor} to perform the the work in. For heavier * transformations, this overload carries some caveats: First, the thread that * the transformation runs in depends on whether the input {@code Future} is * done at the time {@code transform} is called. In particular, if called * late, {@code transform} will perform the transformation in the thread that * called {@code transform}. Second, transformations may run in an internal * thread of the system responsible for the input {@code Future}, such as an * RPC network thread. Finally, during the execution of a {@link * MoreExecutors#sameThreadExecutor sameThreadExecutor} transformation, all * other registered but unexecuted listeners are prevented from running, even * if those listeners are to run in other executors. * * <p>The returned {@code Future} attempts to keep its cancellation state in * sync with that of the input future. That is, if the returned {@code Future} * is cancelled, it will attempt to cancel the input, and if the input is * cancelled, the returned {@code Future} will receive a callback in which it * will attempt to cancel itself. * * <p>An example use of this method is to convert a serializable object * returned from an RPC into a POJO. * * @param future The future to transform * @param function A Function to transform the results of the provided future * to the results of the returned future. This will be run in the thread * that notifies input it is complete. * @return A future that holds result of the transformation. * @since 9.0 (in 1.0 as {@code compose}) */ public static <I, O> ListenableFuture<O> transform(ListenableFuture<I> future, final Function<? super I, ? extends O> function) { return transform(future, function, MoreExecutors.sameThreadExecutor()); } /** * Returns a new {@code ListenableFuture} whose result is the product of * applying the given {@code Function} to the result of the given {@code * Future}. Example: * * <pre> {@code * ListenableFuture<QueryResult> queryFuture = ...; * Function<QueryResult, List<Row>> rowsFunction = * new Function<QueryResult, List<Row>>() { * public List<Row> apply(QueryResult queryResult) { * return queryResult.getRows(); * } * }; * ListenableFuture<List<Row>> rowsFuture = * transform(queryFuture, rowsFunction, executor); * }</pre> * * <p>The returned {@code Future} attempts to keep its cancellation state in * sync with that of the input future. That is, if the returned {@code Future} * is cancelled, it will attempt to cancel the input, and if the input is * cancelled, the returned {@code Future} will receive a callback in which it * will attempt to cancel itself. * * <p>An example use of this method is to convert a serializable object * returned from an RPC into a POJO. * * <p>Note: For cases in which the transformation is fast and lightweight, * consider {@linkplain Futures#transform(ListenableFuture, Function) the * other overload} or explicit use of {@link * MoreExecutors#sameThreadExecutor}. For heavier transformations, this choice * carries some caveats: First, the thread that the transformation runs in * depends on whether the input {@code Future} is done at the time {@code * transform} is called. In particular, if called late, {@code transform} will * perform the transformation in the thread that called {@code transform}. * Second, transformations may run in an internal thread of the system * responsible for the input {@code Future}, such as an RPC network thread. * Finally, during the execution of a {@link MoreExecutors#sameThreadExecutor * sameThreadExecutor} transformation, all other registered but unexecuted * listeners are prevented from running, even if those listeners are to run * in other executors. * * @param future The future to transform * @param function A Function to transform the results of the provided future * to the results of the returned future. * @param exec Executor to run the function in. * @return A future that holds result of the transformation. * @since 9.0 (in 2.0 as {@code compose}) */ public static <I, O> ListenableFuture<O> transform(ListenableFuture<I> future, final Function<? super I, ? extends O> function, Executor exec) { checkNotNull(function); Function<I, ListenableFuture<O>> wrapperFunction = new Function<I, ListenableFuture<O>>() { @Override public ListenableFuture<O> apply(I input) { O output = function.apply(input); return immediateFuture(output); } }; return chain(future, wrapperFunction, exec); } /** * Like {@link #transform(ListenableFuture, Function)} except that the * transformation {@code function} is invoked on each call to * {@link Future#get() get()} on the returned future. * * <p>The returned {@code Future} reflects the input's cancellation * state directly, and any attempt to cancel the returned Future is likewise * passed through to the input Future. * * <p>Note that calls to {@linkplain Future#get(long, TimeUnit) timed get} * only apply the timeout to the execution of the underlying {@code Future}, * <em>not</em> to the execution of the transformation function. * * <p>The primary audience of this method is callers of {@code transform} * who don't have a {@code ListenableFuture} available and * do not mind repeated, lazy function evaluation. * * @param future The future to transform * @param function A Function to transform the results of the provided future * to the results of the returned future. * @return A future that returns the result of the transformation. * @since 10.0 */ @Beta public static <I, O> Future<O> lazyTransform(final Future<I> future, final Function<? super I, ? extends O> function) { checkNotNull(future); checkNotNull(function); return new Future<O>() { @Override public boolean cancel(boolean mayInterruptIfRunning) { return future.cancel(mayInterruptIfRunning); } @Override public boolean isCancelled() { return future.isCancelled(); } @Override public boolean isDone() { return future.isDone(); } @Override public O get() throws InterruptedException, ExecutionException { return applyTransformation(future.get()); } @Override public O get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { return applyTransformation(future.get(timeout, unit)); } private O applyTransformation(I input) throws ExecutionException { try { return function.apply(input); } catch (Throwable t) { throw new ExecutionException(t); } } }; } /** * Returns a new {@code Future} whose result is the product of applying the * given {@code Function} to the result of the given {@code Future}. Example: * * <pre> {@code * Future<QueryResult> queryFuture = ...; * Function<QueryResult, List<Row>> rowsFunction = * new Function<QueryResult, List<Row>>() { * public List<Row> apply(QueryResult queryResult) { * return queryResult.getRows(); * } * }; * Future<List<Row>> rowsFuture = transform(queryFuture, rowsFunction); * }</pre> * * <p>Each call to {@code Future<O>.get(*)} results in a call to * {@code Future<I>.get(*)}, but {@code function} is only applied once, so it * is assumed that {@code Future<I>.get(*)} is idempotent. * * <p>When calling {@link Future#get(long, TimeUnit)} on the returned * future, the timeout only applies to the future passed in to this method. * Any additional time taken by applying {@code function} is not considered. * (Exception: If the input future is a {@link ListenableFuture}, timeouts * will be strictly enforced.) * * @param future The future to transform * @param function A Function to transform the results of the provided future * to the results of the returned future. This will be run in the thread * that calls one of the varieties of {@code get()}. * @return A future that computes result of the transformation * @since 9.0 (in 1.0 as {@code compose}) * @deprecated Obtain a {@code ListenableFuture} (following the advice in its * documentation) and use {@link #transform(ListenableFuture, Function)} * or use {@link #lazyTransform(Future, Function)}, which will apply the * transformation on each call to {@code get()}. * <b>This method is scheduled for deletion from Guava in Guava release * 11.0.</b> */ @Deprecated public static <I, O> Future<O> transform(final Future<I> future, final Function<? super I, ? extends O> function) { if (future instanceof ListenableFuture) { return transform((ListenableFuture<I>) future, function); } checkNotNull(future); checkNotNull(function); return new Future<O>() { /* * Concurrency detail: * * <p>To preserve the idempotency of calls to this.get(*) calls to the * function are only applied once. A lock is required to prevent multiple * applications of the function. The calls to future.get(*) are performed * outside the lock, as is required to prevent calls to * get(long, TimeUnit) to persist beyond their timeout. * * <p>Calls to future.get(*) on every call to this.get(*) also provide * the cancellation behavior for this. * * <p>(Consider: in thread A, call get(), in thread B call get(long, * TimeUnit). Thread B may have to wait for Thread A to finish, which * would be unacceptable.) * * <p>Note that each call to Future<O>.get(*) results in a call to * Future<I>.get(*), but the function is only applied once, so * Future<I>.get(*) is assumed to be idempotent. */ private final Object lock = new Object(); private boolean set = false; private O value = null; private ExecutionException exception = null; @Override public O get() throws InterruptedException, ExecutionException { return apply(future.get()); } @Override public O get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { return apply(future.get(timeout, unit)); } private O apply(I raw) throws ExecutionException { synchronized (lock) { if (!set) { try { value = function.apply(raw); } catch (RuntimeException e) { exception = new ExecutionException(e); } catch (Error e) { exception = new ExecutionException(e); } set = true; } if (exception != null) { throw exception; } return value; } } @Override public boolean cancel(boolean mayInterruptIfRunning) { return future.cancel(mayInterruptIfRunning); } @Override public boolean isCancelled() { return future.isCancelled(); } @Override public boolean isDone() { return future.isDone(); } }; } /** * An implementation of {@code ListenableFuture} that also implements * {@code Runnable} so that it can be used to nest ListenableFutures. * Once the passed-in {@code ListenableFuture} is complete, it calls the * passed-in {@code Function} to generate the result. * * <p>If the function throws any checked exceptions, they should be wrapped * in a {@code UndeclaredThrowableException} so that this class can get * access to the cause. */ private static class ChainingListenableFuture<I, O> extends AbstractFuture<O> implements Runnable { private Function<? super I, ? extends ListenableFuture<? extends O>> function; private ListenableFuture<? extends I> inputFuture; private volatile ListenableFuture<? extends O> outputFuture; private final BlockingQueue<Boolean> mayInterruptIfRunningChannel = new LinkedBlockingQueue<Boolean>(1); private final CountDownLatch outputCreated = new CountDownLatch(1); private ChainingListenableFuture( Function<? super I, ? extends ListenableFuture<? extends O>> function, ListenableFuture<? extends I> inputFuture) { this.function = checkNotNull(function); this.inputFuture = checkNotNull(inputFuture); } /** * Delegate the get() to the input and output futures, in case * their implementations defer starting computation until their * own get() is invoked. */ @Override public O get() throws InterruptedException, ExecutionException { if (!isDone()) { // Invoking get on the inputFuture will ensure our own run() // method below is invoked as a listener when inputFuture sets // its value. Therefore when get() returns we should then see // the outputFuture be created. ListenableFuture<? extends I> inputFuture = this.inputFuture; if (inputFuture != null) { inputFuture.get(); } // If our listener was scheduled to run on an executor we may // need to wait for our listener to finish running before the // outputFuture has been constructed by the function. outputCreated.await(); // Like above with the inputFuture, we have a listener on // the outputFuture that will set our own value when its // value is set. Invoking get will ensure the output can // complete and invoke our listener, so that we can later // get the result. ListenableFuture<? extends O> outputFuture = this.outputFuture; if (outputFuture != null) { outputFuture.get(); } } return super.get(); } /** * Delegate the get() to the input and output futures, in case * their implementations defer starting computation until their * own get() is invoked. */ @Override public O get(long timeout, TimeUnit unit) throws TimeoutException, ExecutionException, InterruptedException { if (!isDone()) { // Use a single time unit so we can decrease remaining timeout // as we wait for various phases to complete. if (unit != NANOSECONDS) { timeout = NANOSECONDS.convert(timeout, unit); unit = NANOSECONDS; } // Invoking get on the inputFuture will ensure our own run() // method below is invoked as a listener when inputFuture sets // its value. Therefore when get() returns we should then see // the outputFuture be created. ListenableFuture<? extends I> inputFuture = this.inputFuture; if (inputFuture != null) { long start = System.nanoTime(); inputFuture.get(timeout, unit); timeout -= Math.max(0, System.nanoTime() - start); } // If our listener was scheduled to run on an executor we may // need to wait for our listener to finish running before the // outputFuture has been constructed by the function. long start = System.nanoTime(); if (!outputCreated.await(timeout, unit)) { throw new TimeoutException(); } timeout -= Math.max(0, System.nanoTime() - start); // Like above with the inputFuture, we have a listener on // the outputFuture that will set our own value when its // value is set. Invoking get will ensure the output can // complete and invoke our listener, so that we can later // get the result. ListenableFuture<? extends O> outputFuture = this.outputFuture; if (outputFuture != null) { outputFuture.get(timeout, unit); } } return super.get(timeout, unit); } @Override public boolean cancel(boolean mayInterruptIfRunning) { /* * Our additional cancellation work needs to occur even if * !mayInterruptIfRunning, so we can't move it into interruptTask(). */ if (super.cancel(mayInterruptIfRunning)) { // This should never block since only one thread is allowed to cancel // this Future. putUninterruptibly(mayInterruptIfRunningChannel, mayInterruptIfRunning); cancel(inputFuture, mayInterruptIfRunning); cancel(outputFuture, mayInterruptIfRunning); return true; } return false; } private void cancel(@Nullable Future<?> future, boolean mayInterruptIfRunning) { if (future != null) { future.cancel(mayInterruptIfRunning); } } @Override public void run() { try { I sourceResult; try { sourceResult = getUninterruptibly(inputFuture); } catch (CancellationException e) { // Cancel this future and return. // At this point, inputFuture is cancelled and outputFuture doesn't // exist, so the value of mayInterruptIfRunning is irrelevant. cancel(false); return; } catch (ExecutionException e) { // Set the cause of the exception as this future's exception setException(e.getCause()); return; } final ListenableFuture<? extends O> outputFuture = this.outputFuture = function.apply(sourceResult); if (isCancelled()) { // Handles the case where cancel was called while the function was // being applied. // There is a gap in cancel(boolean) between calling sync.cancel() // and storing the value of mayInterruptIfRunning, so this thread // needs to block, waiting for that value. outputFuture.cancel( takeUninterruptibly(mayInterruptIfRunningChannel)); this.outputFuture = null; return; } outputFuture.addListener(new Runnable() { @Override public void run() { try { // Here it would have been nice to have had an // UninterruptibleListenableFuture, but we don't want to start a // combinatorial explosion of interfaces, so we have to make do. set(getUninterruptibly(outputFuture)); } catch (CancellationException e) { // Cancel this future and return. // At this point, inputFuture and outputFuture are done, so the // value of mayInterruptIfRunning is irrelevant. cancel(false); return; } catch (ExecutionException e) { // Set the cause of the exception as this future's exception setException(e.getCause()); } finally { // Don't pin inputs beyond completion ChainingListenableFuture.this.outputFuture = null; } } }, MoreExecutors.sameThreadExecutor()); } catch (UndeclaredThrowableException e) { // Set the cause of the exception as this future's exception setException(e.getCause()); } catch (RuntimeException e) { // This exception is irrelevant in this thread, but useful for the // client setException(e); } catch (Error e) { // Propagate errors up ASAP - our superclass will rethrow the error setException(e); } finally { // Don't pin inputs beyond completion function = null; inputFuture = null; // Allow our get routines to examine outputFuture now. outputCreated.countDown(); } } } /** * Creates a new {@code ListenableFuture} whose value is a list containing the * values of all its input futures, if all succeed. If any input fails, the * returned future fails. * * <p>The list of results is in the same order as the input list. * * <p>Canceling this future does not cancel any of the component futures; * however, if any of the provided futures fails or is canceled, this one is, * too. * * @param futures futures to combine * @return a future that provides a list of the results of the component * futures * @since 10.0 */ @Beta public static <V> ListenableFuture<List<V>> allAsList( ListenableFuture<? extends V>... futures) { return new ListFuture<V>(ImmutableList.copyOf(futures), true, MoreExecutors.sameThreadExecutor()); } /** * Creates a new {@code ListenableFuture} whose value is a list containing the * values of all its input futures, if all succeed. If any input fails, the * returned future fails. * * <p>The list of results is in the same order as the input list. * * <p>Canceling this future does not cancel any of the component futures; * however, if any of the provided futures fails or is canceled, this one is, * too. * * @param futures futures to combine * @return a future that provides a list of the results of the component * futures * @since 10.0 */ @Beta public static <V> ListenableFuture<List<V>> allAsList( Iterable<? extends ListenableFuture<? extends V>> futures) { return new ListFuture<V>(ImmutableList.copyOf(futures), true, MoreExecutors.sameThreadExecutor()); } /** * Creates a new {@code ListenableFuture} whose value is a list containing the * values of all its successful input futures. The list of results is in the * same order as the input list, and if any of the provided futures fails or * is canceled, its corresponding position will contain {@code null} (which is * indistinguishable from the future having a successful value of * {@code null}). * * @param futures futures to combine * @return a future that provides a list of the results of the component * futures * @since 10.0 */ @Beta public static <V> ListenableFuture<List<V>> successfulAsList( ListenableFuture<? extends V>... futures) { return new ListFuture<V>(ImmutableList.copyOf(futures), false, MoreExecutors.sameThreadExecutor()); } /** * Creates a new {@code ListenableFuture} whose value is a list containing the * values of all its successful input futures. The list of results is in the * same order as the input list, and if any of the provided futures fails or * is canceled, its corresponding position will contain {@code null} (which is * indistinguishable from the future having a successful value of * {@code null}). * * @param futures futures to combine * @return a future that provides a list of the results of the component * futures * @since 10.0 */ @Beta public static <V> ListenableFuture<List<V>> successfulAsList( Iterable<? extends ListenableFuture<? extends V>> futures) { return new ListFuture<V>(ImmutableList.copyOf(futures), false, MoreExecutors.sameThreadExecutor()); } /** * Registers separate success and failure callbacks to be run when the {@code * Future}'s computation is {@linkplain java.util.concurrent.Future#isDone() * complete} or, if the computation is already complete, immediately. * * <p>There is no guaranteed ordering of execution of callbacks, but any * callback added through this method is guaranteed to be called once the * computation is complete. * * Example: <pre> {@code * ListenableFuture<QueryResult> future = ...; * addCallback(future, * new FutureCallback<QueryResult> { * public void onSuccess(QueryResult result) { * storeInCache(result); * } * public void onFailure(Throwable t) { * reportError(t); * } * });}</pre> * * <p>Note: This overload of {@code addCallback} is designed for cases in * which the callack is fast and lightweight, as the method does not accept * an {@code Executor} to perform the the work in. For heavier * callbacks, this overload carries some caveats: First, the thread that * the callback runs in depends on whether the input {@code Future} is * done at the time {@code addCallback} is called. In particular, if called * late, {@code addCallback} will execute the callback in the thread that * called {@code addCallback}. Second, callbacks may run in an internal * thread of the system responsible for the input {@code Future}, such as an * RPC network thread. Finally, during the execution of a {@link * MoreExecutors#sameThreadExecutor sameThreadExecutor} callback, all other * registered but unexecuted listeners are prevented from running, even if * those listeners are to run in other executors. * * <p>For a more general interface to attach a completion listener to a * {@code Future}, see {@link ListenableFuture#addListener addListener}. * * @param future The future attach the callback to. * @param callback The callback to invoke when {@code future} is completed. * @since 10.0 */ public static <V> void addCallback(ListenableFuture<V> future, FutureCallback<? super V> callback) { addCallback(future, callback, MoreExecutors.sameThreadExecutor()); } /** * Registers separate success and failure callbacks to be run when the {@code * Future}'s computation is {@linkplain java.util.concurrent.Future#isDone() * complete} or, if the computation is already complete, immediately. * * <p>The callback is run in {@code executor}. * There is no guaranteed ordering of execution of callbacks, but any * callback added through this method is guaranteed to be called once the * computation is complete. * * Example: <pre> {@code * ListenableFuture<QueryResult> future = ...; * Executor e = ... * addCallback(future, e, * new FutureCallback<QueryResult> { * public void onSuccess(QueryResult result) { * storeInCache(result); * } * public void onFailure(Throwable t) { * reportError(t); * } * });}</pre> * * When the callback is fast and lightweight consider * {@linkplain Futures#addCallback(ListenableFuture, FutureCallback) * the other overload} or explicit use of * {@link MoreExecutors#sameThreadExecutor() sameThreadExecutor}. For heavier * callbacks, this choice carries some caveats: First, the thread that * the callback runs in depends on whether the input {@code Future} is * done at the time {@code addCallback} is called. In particular, if called * late, {@code addCallback} will execute the callback in the thread that * called {@code addCallback}. Second, callbacks may run in an internal * thread of the system responsible for the input {@code Future}, such as an * RPC network thread. Finally, during the execution of a {@link * MoreExecutors#sameThreadExecutor sameThreadExecutor} callback, all other * registered but unexecuted listeners are prevented from running, even if * those listeners are to run in other executors. * * <p>For a more general interface to attach a completion listener to a * {@code Future}, see {@link ListenableFuture#addListener addListener}. * * @param future The future attach the callback to. * @param callback The callback to invoke when {@code future} is completed. * @param executor The executor to run {@code callback} when the future * completes. * @since 10.0 */ public static <V> void addCallback(final ListenableFuture<V> future, final FutureCallback<? super V> callback, Executor executor) { Preconditions.checkNotNull(callback); Runnable callbackListener = new Runnable() { @Override public void run() { try { // TODO(user): (Before Guava release), validate that this // is the thing for IE. V value = getUninterruptibly(future); callback.onSuccess(value); } catch (ExecutionException e) { callback.onFailure(e.getCause()); } catch (RuntimeException e) { callback.onFailure(e); } catch (Error e) { callback.onFailure(e); } } }; future.addListener(callbackListener, executor); } /** * Returns the result of {@link Future#get()}, converting most exceptions to a * new instance of the given checked exception type. This reduces boilerplate * for a common use of {@code Future} in which it is unnecessary to * programmatically distinguish between exception types or to extract other * information from the exception instance. * * <p>Exceptions from {@code Future.get} are treated as follows: * <ul> * <li>Any {@link ExecutionException} has its <i>cause</i> wrapped in an * {@code X} if the cause is a checked exception, an {@link * UncheckedExecutionException} if the cause is a {@code * RuntimeException}, or an {@link ExecutionError} if the cause is an * {@code Error}. * <li>Any {@link InterruptedException} is wrapped in an {@code X} (after * restoring the interrupt). * <li>Any {@link CancellationException} is propagated untouched, as is any * other {@link RuntimeException} (though {@code get} implementations are * discouraged from throwing such exceptions). * </ul> * * The overall principle is to continue to treat every checked exception as a * checked exception, every unchecked exception as an unchecked exception, and * every error as an error. In addition, the cause of any {@code * ExecutionException} is wrapped in order to ensure that the new stack trace * matches that of the current thread. * * <p>Instances of {@code exceptionClass} are created by choosing an arbitrary * public constructor that accepts zero or more arguments, all of type {@code * String} or {@code Throwable} (preferring constructors with at least one * {@code String}) and calling the constructor via reflection. If the * exception did not already have a cause, one is set by calling {@link * Throwable#initCause(Throwable)} on it. If no such constructor exists, an * {@code IllegalArgumentException} is thrown. * * @throws X if {@code get} throws any checked exception except for an {@code * ExecutionException} whose cause is not itself a checked exception * @throws UncheckedExecutionException if {@code get} throws an {@code * ExecutionException} with a {@code RuntimeException} as its cause * @throws ExecutionError if {@code get} throws an {@code ExecutionException} * with an {@code Error} as its cause * @throws CancellationException if {@code get} throws a {@code * CancellationException} * @throws IllegalArgumentException if {@code exceptionClass} extends {@code * RuntimeException} or does not have a suitable constructor * @since 10.0 */ @Beta public static <V, X extends Exception> V get( Future<V> future, Class<X> exceptionClass) throws X { checkNotNull(future); checkArgument(!RuntimeException.class.isAssignableFrom(exceptionClass), "Futures.get exception type (%s) must not be a RuntimeException", exceptionClass); try { return future.get(); } catch (InterruptedException e) { currentThread().interrupt(); throw newWithCause(exceptionClass, e); } catch (ExecutionException e) { wrapAndThrowExceptionOrError(e.getCause(), exceptionClass); throw new AssertionError(); } } /** * Returns the result of {@link Future#get(long, TimeUnit)}, converting most * exceptions to a new instance of the given checked exception type. This * reduces boilerplate for a common use of {@code Future} in which it is * unnecessary to programmatically distinguish between exception types or to * extract other information from the exception instance. * * <p>Exceptions from {@code Future.get} are treated as follows: * <ul> * <li>Any {@link ExecutionException} has its <i>cause</i> wrapped in an * {@code X} if the cause is a checked exception, an {@link * UncheckedExecutionException} if the cause is a {@code * RuntimeException}, or an {@link ExecutionError} if the cause is an * {@code Error}. * <li>Any {@link InterruptedException} is wrapped in an {@code X} (after * restoring the interrupt). * <li>Any {@link TimeoutException} is wrapped in an {@code X}. * <li>Any {@link CancellationException} is propagated untouched, as is any * other {@link RuntimeException} (though {@code get} implementations are * discouraged from throwing such exceptions). * </ul> * * The overall principle is to continue to treat every checked exception as a * checked exception, every unchecked exception as an unchecked exception, and * every error as an error. In addition, the cause of any {@code * ExecutionException} is wrapped in order to ensure that the new stack trace * matches that of the current thread. * * <p>Instances of {@code exceptionClass} are created by choosing an arbitrary * public constructor that accepts zero or more arguments, all of type {@code * String} or {@code Throwable} (preferring constructors with at least one * {@code String}) and calling the constructor via reflection. If the * exception did not already have a cause, one is set by calling {@link * Throwable#initCause(Throwable)} on it. If no such constructor exists, an * {@code IllegalArgumentException} is thrown. * * @throws X if {@code get} throws any checked exception except for an {@code * ExecutionException} whose cause is not itself a checked exception * @throws UncheckedExecutionException if {@code get} throws an {@code * ExecutionException} with a {@code RuntimeException} as its cause * @throws ExecutionError if {@code get} throws an {@code ExecutionException} * with an {@code Error} as its cause * @throws CancellationException if {@code get} throws a {@code * CancellationException} * @throws IllegalArgumentException if {@code exceptionClass} extends {@code * RuntimeException} or does not have a suitable constructor * @since 10.0 */ @Beta public static <V, X extends Exception> V get( Future<V> future, long timeout, TimeUnit unit, Class<X> exceptionClass) throws X { checkNotNull(future); checkNotNull(unit); checkArgument(!RuntimeException.class.isAssignableFrom(exceptionClass), "Futures.get exception type (%s) must not be a RuntimeException", exceptionClass); try { return future.get(timeout, unit); } catch (InterruptedException e) { currentThread().interrupt(); throw newWithCause(exceptionClass, e); } catch (TimeoutException e) { throw newWithCause(exceptionClass, e); } catch (ExecutionException e) { wrapAndThrowExceptionOrError(e.getCause(), exceptionClass); throw new AssertionError(); } } private static <X extends Exception> void wrapAndThrowExceptionOrError( Throwable cause, Class<X> exceptionClass) throws X { if (cause instanceof Error) { throw new ExecutionError((Error) cause); } if (cause instanceof RuntimeException) { throw new UncheckedExecutionException(cause); } throw newWithCause(exceptionClass, cause); } /** * Returns the result of calling {@link Future#get()} uninterruptibly on a * task known not to throw a checked exception. This makes {@code Future} more * suitable for lightweight, fast-running tasks that, barring bugs in the * code, will not fail. This gives it exception-handling behavior similar to * that of {@code ForkJoinTask.join}. * * <p>Exceptions from {@code Future.get} are treated as follows: * <ul> * <li>Any {@link ExecutionException} has its <i>cause</i> wrapped in an * {@link UncheckedExecutionException} (if the cause is an {@code * Exception}) or {@link ExecutionError} (if the cause is an {@code * Error}). * <li>Any {@link InterruptedException} causes a retry of the {@code get} * call. The interrupt is restored before {@code getUnchecked} returns. * <li>Any {@link CancellationException} is propagated untouched. So is any * other {@link RuntimeException} ({@code get} implementations are * discouraged from throwing such exceptions). * </ul> * * The overall principle is to eliminate all checked exceptions: to loop to * avoid {@code InterruptedException}, to pass through {@code * CancellationException}, and to wrap any exception from the underlying * computation in an {@code UncheckedExecutionException} or {@code * ExecutionError}. * * <p>For an uninterruptible {@code get} that preserves other exceptions, see * {@link Uninterruptibles#getUninterruptibly(Future)}. * * @throws UncheckedExecutionException if {@code get} throws an {@code * ExecutionException} with an {@code Exception} as its cause * @throws ExecutionError if {@code get} throws an {@code ExecutionException} * with an {@code Error} as its cause * @throws CancellationException if {@code get} throws a {@code * CancellationException} * @since 10.0 */ @Beta public static <V> V getUnchecked(Future<V> future) { checkNotNull(future); try { return getUninterruptibly(future); } catch (ExecutionException e) { wrapAndThrowUnchecked(e.getCause()); throw new AssertionError(); } } private static void wrapAndThrowUnchecked(Throwable cause) { if (cause instanceof Error) { throw new ExecutionError((Error) cause); } /* * It's a non-Error, non-Exception Throwable. From my survey of such * classes, I believe that most users intended to extend Exception, so we'll * treat it like an Exception. */ throw new UncheckedExecutionException(cause); } /* * TODO(user): FutureChecker interface for these to be static methods on? If * so, refer to it in the (static-method) Futures.get documentation */ /* * Arguably we don't need a timed getUnchecked because any operation slow * enough to require a timeout is heavyweight enough to throw a checked * exception and therefore be inappropriate to use with getUnchecked. Further, * it's not clear that converting the checked TimeoutException to a * RuntimeException -- especially to an UncheckedExecutionException, since it * wasn't thrown by the computation -- makes sense, and if we don't convert * it, the user still has to write a try-catch block. * * If you think you would use this method, let us know. */ private static <X extends Exception> X newWithCause( Class<X> exceptionClass, Throwable cause) { // getConstructors() guarantees this as long as we don't modify the array. @SuppressWarnings("unchecked") List<Constructor<X>> constructors = (List) Arrays.asList(exceptionClass.getConstructors()); for (Constructor<X> constructor : preferringStrings(constructors)) { @Nullable X instance = newFromConstructor(constructor, cause); if (instance != null) { if (instance.getCause() == null) { instance.initCause(cause); } return instance; } } throw new IllegalArgumentException( "No appropriate constructor for exception of type " + exceptionClass + " in response to chained exception", cause); } private static <X extends Exception> List<Constructor<X>> preferringStrings(List<Constructor<X>> constructors) { return WITH_STRING_PARAM_FIRST.sortedCopy(constructors); } private static final Ordering<Constructor<?>> WITH_STRING_PARAM_FIRST = Ordering.natural().onResultOf(new Function<Constructor<?>, Boolean>() { @Override public Boolean apply(Constructor<?> input) { return asList(input.getParameterTypes()).contains(String.class); } }).reverse(); @Nullable private static <X> X newFromConstructor( Constructor<X> constructor, Throwable cause) { Class<?>[] paramTypes = constructor.getParameterTypes(); Object[] params = new Object[paramTypes.length]; for (int i = 0; i < paramTypes.length; i++) { Class<?> paramType = paramTypes[i]; if (paramType.equals(String.class)) { params[i] = cause.toString(); } else if (paramType.equals(Throwable.class)) { params[i] = cause; } else { return null; } } try { return constructor.newInstance(params); } catch (IllegalArgumentException e) { return null; } catch (InstantiationException e) { return null; } catch (IllegalAccessException e) { return null; } catch (InvocationTargetException e) { return null; } } /** * Class that implements {@link #allAsList} and {@link #successfulAsList}. * The idea is to create a (null-filled) List and register a listener with * each component future to fill out the value in the List when that future * completes. */ private static class ListFuture<V> extends AbstractFuture<List<V>> { ImmutableList<? extends ListenableFuture<? extends V>> futures; final boolean allMustSucceed; final AtomicInteger remaining; List<V> values; /** * Constructor. * * @param futures all the futures to build the list from * @param allMustSucceed whether a single failure or cancellation should * propagate to this future * @param listenerExecutor used to run listeners on all the passed in * futures. */ ListFuture( final ImmutableList<? extends ListenableFuture<? extends V>> futures, final boolean allMustSucceed, final Executor listenerExecutor) { this.futures = futures; this.values = Lists.newArrayListWithCapacity(futures.size()); this.allMustSucceed = allMustSucceed; this.remaining = new AtomicInteger(futures.size()); init(listenerExecutor); } private void init(final Executor listenerExecutor) { // First, schedule cleanup to execute when the Future is done. addListener(new Runnable() { @Override public void run() { // By now the values array has either been set as the Future's value, // or (in case of failure) is no longer useful. ListFuture.this.values = null; // Let go of the memory held by other futures ListFuture.this.futures = null; } }, MoreExecutors.sameThreadExecutor()); // Now begin the "real" initialization. // Corner case: List is empty. if (futures.isEmpty()) { set(Lists.newArrayList(values)); return; } // Populate the results list with null initially. for (int i = 0; i < futures.size(); ++i) { values.add(null); } // Register a listener on each Future in the list to update // the state of this future. // Note that if all the futures on the list are done prior to completing // this loop, the last call to addListener() will callback to // setOneValue(), transitively call our cleanup listener, and set // this.futures to null. // We store a reference to futures to avoid the NPE. ImmutableList<? extends ListenableFuture<? extends V>> localFutures = futures; for (int i = 0; i < localFutures.size(); i++) { final ListenableFuture<? extends V> listenable = localFutures.get(i); final int index = i; listenable.addListener(new Runnable() { @Override public void run() { setOneValue(index, listenable); } }, listenerExecutor); } } /** * Sets the value at the given index to that of the given future. */ private void setOneValue(int index, Future<? extends V> future) { List<V> localValues = values; if (isDone() || localValues == null) { // Some other future failed or has been cancelled, causing this one to // also be cancelled or have an exception set. This should only happen // if allMustSucceed is true. checkState(allMustSucceed, "Future was done before all dependencies completed"); return; } try { checkState(future.isDone(), "Tried to set value from future which is not done"); localValues.set(index, getUninterruptibly(future)); } catch (CancellationException e) { if (allMustSucceed) { // Set ourselves as cancelled. Let the input futures keep running // as some of them may be used elsewhere. // (Currently we don't override interruptTask, so // mayInterruptIfRunning==false isn't technically necessary.) cancel(false); } } catch (ExecutionException e) { if (allMustSucceed) { // As soon as the first one fails, throw the exception up. // The result of all other inputs is then ignored. setException(e.getCause()); } } catch (RuntimeException e) { if (allMustSucceed) { setException(e); } } catch (Error e) { // Propagate errors up ASAP - our superclass will rethrow the error setException(e); } finally { int newRemaining = remaining.decrementAndGet(); checkState(newRemaining >= 0, "Less than 0 remaining futures"); if (newRemaining == 0) { localValues = values; if (localValues != null) { set(Lists.newArrayList(localValues)); } else { checkState(isDone()); } } } } @Override public List<V> get() throws InterruptedException, ExecutionException { callAllGets(); // This may still block in spite of the calls above, as the listeners may // be scheduled for execution in other threads. return super.get(); } /** * Calls the get method of all dependency futures to work around a bug in * some ListenableFutures where the listeners aren't called until get() is * called. */ private void callAllGets() throws InterruptedException { List<? extends ListenableFuture<? extends V>> oldFutures = futures; if (oldFutures != null && !isDone()) { for (ListenableFuture<? extends V> future : oldFutures) { // We wait for a little while for the future, but if it's not done, // we check that no other futures caused a cancellation or failure. // This can introduce a delay of up to 10ms in reporting an exception. while (!future.isDone()) { try { future.get(); } catch (Error e) { throw e; } catch (InterruptedException e) { throw e; } catch (Throwable e) { // ExecutionException / CancellationException / RuntimeException if (allMustSucceed) { return; } else { continue; } } } } } } } /** * A checked future that uses a function to map from exceptions to the * appropriate checked type. */ private static class MappingCheckedFuture<V, X extends Exception> extends AbstractCheckedFuture<V, X> { final Function<Exception, X> mapper; MappingCheckedFuture(ListenableFuture<V> delegate, Function<Exception, X> mapper) { super(delegate); this.mapper = checkNotNull(mapper); } @Override protected X mapException(Exception e) { return mapper.apply(e); } } } |
61 KB in 37 ms with coderay